3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 • (905) 227-8848 Fax: (905) 227-1061 Email: techsupport@norgenbiotek.com # Plant/Fungi DNA Isolation Kit Product # 26200 ### **Product Insert** Norgen's Plant/Fungi DNA Isolation Kit provides a rapid method for the isolation and purification of total DNA from a wide range of plant and filamentous fungal species. Total DNA can be purified from fresh or frozen plant tissues, plant cells or filamentous fungi samples using this kit, including genomic DNA, mitochondrial DNA and chloroplast DNA. The procedure is rapid and convenient, as it does not rely on the use of liquid nitrogen in order to homogenize the samples. The DNA is preferentially purified from other cellular components, such as proteins, without the use of phenol or chloroform. The purified DNA is of the highest integrity, and can be used in a number of downstream applications including real time PCR, Southern blotting and sequencing. ### Norgen's Purification Technology Purification is based on spin column chromatography using Norgen's proprietary resin as the separation matrix. The DNA is preferentially purified from other cellular components such as proteins without the use of phenol or chloroform. The process involves first macerating the cells or tissue in a mortar with the provided Lysis Solution (please see the flow chart on page 4). The Lysis Solution contains detergents, as well as large amounts of a chaotropic denaturant that will rapidly inactivate DNAses and proteases that are present. Alternatively, liquid nitrogen can be used to homogenize the sample. The lysate is then spun in a microcentrifuge in order to pellet and remove any debris. Ethanol is then added to the clarified lysate, and the solution is loaded onto a spin-column. Norgen's resin binds nucleic acids in a manner that depends on ionic concentrations, thus only the DNA will bind to the column while most of the RNA and proteins are removed in the flowthrough. The bound DNA is then washed with the provided Wash Solution in order to remove any remaining impurities, and the purified total DNA is eluted with the Elution Buffer. The purified DNA is of the highest integrity, and can be used in a number of downstream applications. #### **Specifications** | Kit Specifications | | | |---|--|--| | Column Binding Capacity | 50 μg | | | Maximum Column Loading Volume | 600 μL | | | Maximum Amount of Starting Material: Plant Tissues Plant Cells Fungi (wet weight) | 50 mg
1 × 10 ⁶ cells
50 mg | | | Average Yields* 50 mg Tomato Leaves 50 mg Tobacco Leaves 50 mg Grape Leaves 50 mg Peach Leaves 50 mg Plum leaves Botrytis Cinerea (50 mg wet weight) Fusarium sp. (50 mg wet weight) Aspergillus Niger (50 mg wet weight) | 18 μg
7 μg
10 μg
10 μg
10 μg
1.5 μg
2 μg
4 μg | | | Time to Complete 10 Purifications | 45 minutes | | average yields will vary depending upon a number of factors including species, growth conditions used and developmental stage. ### **Kit Components** | Component | Product # 26200 (50 preps) | |------------------------|----------------------------| | Lysis Solution | 30 mL | | Wash Solution | 30 mL | | Elution Buffer | 9 mL | | RNase A | 7000 units | | Mini Spin Columns | 50 | | Collection Tubes | 50 | | Elution tubes (1.7 mL) | 50 | | Product Insert | 1 | ### **Advantages** - Fast and easy processing using a rapid spin-column format - Adaptable with current cell homogenization methods - No phenol or chloroform extractions - Isolate high quality total DNA from a variety of plant and fungal species - High yields of total DNA ### **Storage Conditions and Product Stability** All solutions should be kept tightly sealed and stored at room temperature. These reagents should remain stable for at least 1 year in their unopened containers. ### **Precautions and Disclaimers** This kit is designed for research purposes only. It is not intended for human or diagnostic use. Ensure that a suitable lab coat, disposable gloves and protective goggles are worn when working with chemicals. For more information, please consult the appropriate Material Safety Data Sheets (MSDSs). These are available as convenient PDF files online at www.norgenbiotek.com. ### **Customer-Supplied Reagents and Equipment** You must have the following in order to use the Plant/Fungi DNA Isolation Kit: - Benchtop microcenrifuge - 96-100 % ethanol - 70 % ethanol - β-mercaptoethanol - Liquid nitrogen (Optional) ### **Flow Chart** Procedure for Purifying Total DNA using Norgen's Plant/Fungi DNA Isolation Kit ### Macerate cells or tissue in a mortar using Lysis Solution **Purified Total Plant/Fungi DNA** ### **Procedures** All centrifugation steps are carried out in a benchtop microcentrifuge. Various speeds are required for different steps, so please check your microcentrifuge specifications to ensure that it is capable of the proper speeds. All centrifugation steps are performed at room temperature. The correct rpm can be calculated using the formula: RPM = $$\sqrt{\frac{RCF}{(1.118 \times 10^{-5}) (r)}}$$ where RCF = required gravitational acceleration (relative centrifugal force in units of g); r = radius of the rotor in cm; and RPM = the number of revolutions per minute required to achieve the necessary g-force. #### Notes Prior to Use - All centrifugation steps are carried out in a benchtop microcentrifuge at 14,000 x g (~ 14,000 RPM) except where noted. All centrifugation steps are performed at room temperature. - A variable speed centrifuge should be used for maximum kit performance. If a variable speed centrifuge is not available a fixed speed centrifuge can be used, however reduced yields may be observed. - Ensure that all solutions are at room temperature prior to use. - Prepare a working concentration of the Wash Solution by adding 70 mL of 95 100 % ethanol (provided by the user) to the supplied bottle containing the concentrated Wash Solution. This will give a final volume of 100 mL. The label on the bottle has a box that may be checked to indicate that the ethanol has been added. - Add 10 μ L of β -mercaptoethanol (provided by the user) to each 1 mL of **Lysis Solution** required. β -mercaptoethanol is toxic and should be dispensed in a fume hood. - Add 1 μL of RNase to each 500 μL of Lysis Solution. - Both fresh or frozen samples may be used for this procedure. Samples should be flashfrozen in liquid nitrogen and transferred immediately to a -70°C freezer for long-term storage. - While the provided procedure does not rely on the use of liquid nitrogen to homogenize the sample, both fresh and frozen tissues can optionally be processed using other homogenization methods, including grinding with liquid nitrogen. Please refer to the Note in Step 1a. - It is recommended that no more than 50 mg of fungi (wet weight), 50 mg of plant tissue or 5 x 10⁶ plant cells be used for this procedure in order to prevent clogging of the column. However, in some cases it may be possible to increase the amount of plant material processed up to 100 mg or 5 x 10⁷ cells, depending on the DNA content of the plant. ### 1. Lysate preparation a. Transfer \leq 50 mg of plant tissue or 5 x 10⁶ plant cells into a mortar that contains 500 μ L of Lysis Solution (Add 10 μ L of β -mercaptoethanol to each 1 mL of Lysis Solution). Grind the sample using a pestle until the tissue is completely macerated. Note: Other homogenization methods, including grinding with liquid nitrogen, can be applied to this procedure. If an alternative method is used, add 500 μ L of **Lysis Solution** to the sample immediately after homogenization and vortex for 20 seconds to mix. - b. Incubate at 65 °C for 15 minutes. Occasionally mix the lysate 2 or 3 times during incubation by inverting the tube. - c. Spin the lysate for 5 minutes to pellet any cell debris. - d. Using a pipette, transfer the lysate into a DNAase-free microcentrifuge tube (not provided). **Note:** Depending on the plant or fungal species, large amounts of debris may be present in the supernatant. Ensure that only the clear supernatant is transferred, avoiding any of the debris. If necessary, repeat Step **1c** if visible precipitates are still present after the first spin. e. Add an equal volume of 70% ethanol (provided by the user) to the lysate collected above (100 μ L of ethanol is added to every 100 μ L of lysate). Vortex to mix. **Proceed to Step 2.** ### 2. Binding to Column - a. Assemble a column with one of the provided collection tubes. - b. Apply up to 600 μ L of the clarified lysate with ethanol onto the column and centrifuge for 1 minute at **14000** \times **g** (~**14,000** RPM). Discard the flowthrough and reassemble the spin column with the collection tube. **Note:** Ensure the entire lysate volume has passed through into the collection tube by inspecting the column. If the entire lysate volume has not passed, spin for an additional minute. c. Depending on your lysate volume, repeat step **2b** if necessary. ### 3. Column Wash a. Apply 500 μ L of **Wash Solution** to the column and centrifuge for 1 minute. **Note:** Ensure the entire wash solution has passed through into the collection tube by inspecting the column. If the entire wash volume has not passed, spin for an additional minute. - b. Discard the flowthrough and reassemble the spin column with its collection tube. - c. Repeat steps 3a and 3b to wash column a second time. - d. Wash column a third time by adding another 500 μL of **Wash Solution** and centrifuging for 1 minute. - e. Discard the flowthrough and reassemble the spin column with its collection tube. - f. Spin the column for 2 minutes in order to thoroughly dry the resin. Discard the collection tube. ### 4. DNA Elution - a. Place the column into a fresh 1.7 mL Elution tube provided with the kit. - b. Add 100 μ L of **Elution Buffer** to the column. - c. Centrifuge for 2 minutes at 200 x g (~2,000 RPM), followed by a 1 minute spin at 14,000 x g (~14,000 RPM). Note the volume eluted from the column. If the entire volume has not been eluted, spin the column at 14,000 x g (~14,000 RPM) for 1 additional minute. - d. **(Optional):** An additional elution may be performed if desired by repeating steps **4b** and **4c** using 50 μ L of Elution Buffer. The total yield can be improved by an additional 20-30% when this second elution is performed. ### 5. Storage of DNA The purified genomic DNA can be stored at 2-8°C for a few days. For longer term storage, -20°C is recommended. ## **Troubleshooting Guide** | Problem | Possible Cause | Solution and Explanation | |--|---|---| | Poor DNA
Recovery | Column has become clogged | Do not exceed the recommended amounts of starting materials. The amount of starting material may need to be decreased if the column shows clogging below the recommended levels. See also "Clogged Column" below. | | | An alternative elution buffer was used | It is recommended that the Elution Buffer supplied with this kit be used for maximum DNA recovery. | | | Ethanol was not added to the lysate | Ensure that the appropriate amount of ethanol is added to the lysate before binding to the column. | | | Ethanol was not added to the Wash Solution | Ensure that 70 mL of 95 - 100% ethanol is added to the supplied Wash Solution prior to use. | | Clogged
Column | Maximum number of cells or amount of tissue exceeds kit specifications | The optimal input is 50 mg of plant tissue or filamentous fungi, or 5 x 10 ⁶ plant cells. However, for some species, up to 100 mg of tissue may be processed depending on the DNA content of the sample. | | | Too much cell
debris in the lysate
supernatant | Ensure that most cell debris is removed in Step 1c. | | | Centrifuge
temperature too
low | Ensure that the centrifuge remains at room temperature throughout the procedure. Temperatures below 20°C may cause precipitates to form that can cause the columns to clog. | | DNA does not perform well in downstream applications | DNA was not
washed three times
with the provided
Wash Solution | Traces of salt from the binding step may remain in the sample if the column is not washed three times with the Wash Solution. Salt may interfere with downstream applications, and thus must be washed from the column. | | | Ethanol carryover | Ensure that the dry spin under the Column Wash procedure is performed, in order to remove traces of ethanol prior to elution. Ethanol is known to interfere with many downstream applications. | | Related Products | Product # | |--|-----------| | Plant RNA/DNA Purification Kit | 24400 | | Plant/Fungi Total RNA Purification Kit | 25800 | | HighRanger 1kb DNA Ladder | 11900 | | UltraRanger 1kb DNA Ladder | 12100 | ### **Technical Support** Contact our Technical Support Team between the hours of 8:30 and 5:30 (Eastern Standard Time) at (905) 227-8848 or Toll Free at 1-866-667-4362. Technical support can also be obtained from our website (www.norgenbiotek.com) or through email at techsupport@norgenbiotek.com. 3430 Schmon Parkway, Thorold, ON Canada L2V 4Y6 Phone: (905) 227-8848 Fax: (905) 227-1061 Toll Free in North America: 1-866-667-4362